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ABSTRACT: To understand and manage water systems under a changing climate and meet an increasing demand for wa-
ter, a quantitative understanding of precipitation is most important in coastal regions. The capabilities of the Integrated
Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06B product for precipitation quantification
are examined over three coastal regions of the United States: the West Coast, the Gulf of Mexico, and the East Coast, all
of which are characterized by different topographies and precipitation climatologies. A novel uncertainty analysis of IM-
ERG is proposed that considers environmental and physical parameters such as elevation and distance to the coastline.
The IMERG performance is traced back to its components, i.e., passive microwave (PMW), infrared (IR), and morphing-
based estimates. The analysis is performed using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sen-
sor (GV-MRMS) rainfall estimates as ground reference at the native resolution of IMERG of 30 min and 0.18. IMERG Fi-
nal (IM-F) quantification performance heavily depends on the respective contribution of PMW, IR, and morph
components. IM-F and its components overestimate the contribution of light rainfall (,1 mm h21) and underestimate the
contribution of high rainfall rates (.10 mm h21) to the total rainfall volume. Strong regional dependencies are highlighted,
especially over the West Coast, where the proximity of complex terrain to the coastline challenges precipitation estimates.
Other major drivers are the distance from the coastline, elevation, and precipitation types, especially over the land and
coast surface types, that highlight the impact of precipitation regimes.

KEYWORDS: Atmosphere; Coastlines; Complex terrain; Coastal meteorology; Hydrometeorology; Orographic effects;
Radars/Radar observations; Remote sensing; Satellite observations

1. Introduction

Coasts form a narrow zone between land and ocean that host
large and growing human population, economic activity, and di-
verse plant and animal species. Eight of the top 10 largest cities
in the world are in coastal areas. Most importantly, coastal re-
gions and populations are exposed to hazards from both land
and ocean. Rappaport (2014) reports that in a 50-yr period
(1963–2012) around 2544 people died of coastal water from
tropical cyclones in the United States. In 2017, category 4 storm
Hurricane Harvey hit Texas and caused $125 billion in damage
(National Weather Service 2018). In 2020, category 5 storm
Typhoon Goni hit the Philippines and Vietnam and caused
$392 million of damage and was responsible for approximately

74 deaths. This typhoon lasted for 54 h and was considered
to be the strongest landfalling tropical cyclone to ever be
recorded. Precipitation plays an important role in the moni-
toring, analysis, and planning of water-related disasters (e.g.,
flood and drought; Yilmaz et al. 2005; Nalbantis 2008). Hence,
accurate precipitation measurement and estimation over
coastal regions is critical. However, there are challenges in
precipitation measurement and estimation due to extreme
spatiotemporal variability.

Precipitation can be measured using in situ observations or
remote sensors. In situ sensors (e.g., rain gauges and disdrom-
eters) provide direct precipitation measurements, but their
coverage is limited due to the local nature of these measure-
ments and uneven availability especially over coasts, oceans,
and complex terrain. A detailed understanding and observa-
tion of precipitation over the land–coast–ocean continuum
can only be achieved with remote sensors (e.g., ground radars
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or satellite sensors). Remote sensors can depict precipitation
amount, frequency, and distribution at fine spatiotemporal
scale (Huffman et al. 2020).

Satellite-based precipitation products (SPPs) provide the
best spatial and temporal coverage on the global scale, espe-
cially over the land–coast–ocean continuum. The great success
of the Tropical Rainfall Measuring Mission (TRMM) has led to
the Global Precipitation Measurement Mission (GPM) and ac-
celerated the development of new SPP algorithms, such as the
Integrated Multi-satellitE Retrievals for Global Precipitation
Measurement (IMERG). To obtain high spatiotemporal reso-
lution (0.18, 30 min) and global coverage, IMERG merges
available Level-2 passive microwave (PMW) and infrared
(IR) precipitation retrievals (Huffman et al. 2020). Hence,
sources of uncertainty that affect the detection or quantifica-
tion of precipitation in IMERG can arise from either the sat-
ellite sensors or algorithms for estimating rainfall (Tan et al.
2016; Gebregiorgis et al. 2017, 2018; Kirstetter et al. 2020).
Multiple uncertainties are associated with Level-2 PMW, and
IR precipitation retrievals and Level-3 merged SPPs, espe-
cially in coastal regions. Precipitation retrievals from PMW
observations highly depend on the ability to separate emission
and scattering radiances of rain, ice, and clouds from Earth’s
surface (e.g., Kummerow and Giglio 1994; Carr et al. 2015;
Turk et al. 2021). This is a complicated task and while the
ocean surface is radiometrically cold and homogeneous, the
land surface is warm and heterogeneous. Coastal regions in-
clude contrasting radiative contributions from both ocean and
land hence yielding one of the most uncertain precipitation re-
trievals. It should be noted that the GPM-era retrievals have
not been evaluated over the land–coast–ocean continuum. A
few studies investigate the IMERG performance in the
coastal regions. Sui et al. (2020) identified heterogenous er-
rors in PMW and IR estimates over coastal regions of South-
east China. Wang et al. (2019) reported that IMERG
underestimated precipitation over coastal regions in Guang-
dong Province, China and showed that this is due to missed
precipitation and negative hit bias. Both the GPMGround Vali-
dation (GV) team and IMERG algorithm developers highlight
the importance of evaluation studies in “nontraditional” regions
such as coasts and ocean.

The companion manuscript to this paper (Derin et al. 2021,
hereafter Part I) introduced the study domain, surface type clas-
sification, radar–rain gauge corrected precipitation reference,
and IMERG products and matchup methodology. IM-
ERGV06B Final, Late, and Early and the abilities of their
PMW and IR components to detect precipitation over the
land–coast–ocean continuum were examined and linked to sur-
face and precipitation characteristics over the United States. In
this study, IMERG and its components quantification perfor-
mance over the land–coast–ocean continuum over CONUS is
examined. To address the transferability of regional evaluation
results to different geographical regions, three different coastal
regions of the CONUS are considered, namely, the West Coast,
the Gulf of Mexico, and the East Coast.

The West Coast is characterized by mountain peaks and
steep slopes adjacent to the coastline. Moist airflow that

encounters these slopes is lifted, cooled, and produces oro-
graphic rainfall. During the winter season, synoptic-scale
cyclones and fronts from the Pacific Ocean undergo complex
interactions with coastal mountains within 50 km of the coast-
line. This upslope flow mechanism is a relatively simple con-
ceptual model that can explain the significant fraction of
orographic rainfall observed over the West Coast (Roe 2005;
Houze 2012). Orographic mechanisms tend to generate low-
level enhancement of precipitation with lower ice content
aloft (Purnell and Kirshbaum 2018). It leaves tenuous signa-
tures in the observed satellite brightness temperatures. PMW
retrievals rely on ice content aloft over land and IR retrievals
rely on cold cloud top temperature to infer precipitation, hence
PMW and IR retrievals tend to underestimate these events. On
the other hand, the Gulf Coast is characterized by flat terrain.
During the warm season, sea-breeze fronts, convective storms,
and tropical cyclones are observed, while during the cool season
the Gulf coast is dominated by the return flow of Gulf-modified
warm, moist air and cold front passages. The East Coast is char-
acterized by the Appalachian Mountains and complex coastal
features consisting of barrier islands and coastal inlets. During
the warm season, the Gulf Stream induces significantly different
conditions from the land in terms of wind, humidity, and tem-
perature. During the cool season, offshore Gulf Stream frontal
features are combined with cold air over land, producing com-
plex mesoscale cloud systems. These mesoscale ocean features
include intense coastal cyclogenesis, which often brings freezing
rain, sleet, and snow from North Carolina through New England
(Young and Sikora 2003).

Precipitation mechanisms are complex and depend on several
environmental and physical parameters. Hence, considering en-
vironmental and/or physical parameters to condition matchup
dataset (reference dataset and SPP) could provide more de-
tailed analysis of SPP performance. In this manuscript, the abil-
ity of the IMERG products to quantify precipitation over the
land–coast–ocean continuum is examined at the IMERG native
resolution (30 min and 0.18), and linked to distance to coastline,
surface, and precipitation characteristics over the United States.

This paper is organized as follows. The dataset and evalua-
tion method are represented in section 2. Section 3 discusses
the results, and section 4 summarizes our findings and offers
recommendations for future research directions.

2. Datasets and evaluation method

a. GV-MRMS

The ground-based, radar–rain gauge corrected, 1-km spatial
and 2-min temporal resolution GV-MRMS is used as a refer-
ence dataset (Kirstetter et al. 2012, 2018). GV-MRMS pro-
vides a radar quality index (RQI) to represent the level of
uncertainty associated with reflectivity changes with height
and near the melting layer. RQI ranges from 0 (worst) to
100 (best) (Zhang et al. 2011). A high quality and standard-
ized reference are obtained by removing lower RQI esti-
mates. Additional gauge-based corrections, quality and
quantity controls, and resampling procedures are applied and
described in detail in Kirstetter et al. (2012, 2014, 2015). In
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this study, the radar–gauge-based GV-MRMS is used over a
period of 12 months in 2015.

b. IMERG algorithm

IMERG is a Level-3 merged SPP. The IMERG algorithm in-
tercalibrates, merges, and interpolates all available microwave
retrievals, microwave-calibrated IR satellite estimates, and rain
gauge measurements. Since low-Earth-orbiting PMW observa-
tions are too sparse, IMERGmerges PMW and IR when neces-
sary to output a high temporal resolution dataset. This happens
in two ways: (i) PMW data are morphed using quasi Lagrangian
time interpolation and estimated precipitation feature motion
and (ii) IR estimates are merged with PMW using a Kalman
filter (morph1IR) when PMW estimates are too sparse.

Even though IMERG provides high spatial and temporal
global coverage, it is associated with multiple uncertainties in
coastal regions. These uncertainties can be traced back to the
merging components of Level-2 PMW and IR precipitation re-
trievals. Moreover, uncertainties in these Level-2 products
arise from different mechanisms. Precipitation retrievals from
PMW observations highly depend on the ability to separate
emission and scattering radiances of rain, ice, and clouds from
Earth’s surface (Kummerow 2020). Low surface emissivity
from the ocean creates a strong contrast between a radiometri-
cally cold background and warm, precipitation-related atmo-
spheric signature (Kummerow et al. 2001). On the other hand,
land surfaces are highly emissive, which leads to similar bright-
ness temperature emission signatures with rain. Hence, rainfall
detection over land is based primarily on ice-induced scattering
signatures (Wang et al. 2009). Precipitation retrieval over the
coast becomes a complicated task since the ocean surface is
radiometrically cold and homogenous, while the land surface is
warm and heterogeneous. On the other hand, precipitation
retrievals from IR observations are indirect (Kirstetter et al.
2018), and the primary idea is to infer precipitation occurrence
and intensity at the surface from cloud-top temperatures.

In this study, IMERG version 06B Early, Late, and Final
(IM-E, IM-L, and IM-F, precipitationCal fields) are evaluated
with the aim of understanding the performance of each run,
PMW and IR components, specifically the morphing, and the ef-
fectiveness of rain gauge correction over the land–coast–ocean
continuum. To track uncertainties from Level-2 algorithms,
IMERG-PMW (PMW) and IMERG-IR (IR) precipitation
estimates are examined using ancillary variables provided by
IMERG. The HQprecipitation and IRprecipitation fields are
used for PMW and IR, respectively. The new PMW morphing
procedure (morph) is targeted by selecting instances from
precipitationUncal field where there is no PMW retrieval
(HQprecipSource reports zero) and no IR contributed estimate
(IRkalmanFilterWeight of 0%). IRkalmanFilterWeight between
0% and 100% corresponds to a mixture of morphed PMW and
IR estimates (morph1IR) from precipitationUncal field.

c. Surface type classification

To ensure consistency with IMERG, surface type classifica-
tion is extracted from the GMI GPROF-V05 surface type da-
taset. The GMI GPROF-V05 classification is derived by the

Colorado State University surface classification scheme
(GPROF-V05; Huffman et al. 2019). It classifies 10 land classes
using self-similar mean emissivity from all available SSM/I obser-
vations (1993–2008, Prigent et al. 1997), to which ocean, sea ice,
and two different boundaries that are possible in between land–
ocean, and ocean–sea ice surface types are added. In this study,
three surface types are used, namely, land, ocean, and coast.

d. Data matchup

GV-MRMS and IMERG matchups are extracted following
a temporal and spatial matching at IMERG native resolution.
The analysis is conducted at IMERG native resolution so that
the results remain free of undesirable impacts caused by stat-
istical or dynamical resampling (Kirstetter et al. 2012, 2015).
To conduct a fair analysis and ensure high-quality radar obs-
ervations, matchup datasets that are within 100 km from the
closest NEXRAD are chosen. GV-MRMS rain/no rain thresh-
old is set as 0.1 mm h21 and matchup datasets that have RQI
of 100 (i.e., best possible quality) are used. Moreover, GV-
MRMS provides precipitation types for each grid cell. Note that
cells reporting snow are disregarded from this analysis. The
minimum detectable rain rate from the Ka- and Ku-band radar
are 0.2 and 0.5 mm h21, respectively (Hou et al. 2014). GPROF
is calibrated by these radar-based products, yet the IMERG
estimate could produce rain rates lower than these two thresh-
olds due to the inclusion of data from other sensors. Thus, the
IMERG rain/no rain threshold is set at 0.1 mm h21.

As mentioned previously, the comparison dataset is divided
into three different surface types as land, coast, and ocean
and three different coastal regions as the West Coast, Gulf of
Mexico, and East Coast.

e. Evaluation method

The evaluation of IMERG is conducted in two major steps
defined as detection (Part I) and the quantification analysis,
which is the focus of this manuscript. Several common valida-
tion statistics are employed to characterize differences between
the retrieved estimates and the reference (GV-MRMS) values,
such as the mean relative error (MRE), the linear correlation
coefficient (CORR), and the centralized root-mean-square er-
ror (CRMSE). It bears emphasizing that bulk statistical scores
provide overall information regarding the agreement of the
SPP relative to the validation dataset, which in return
invariably depends on the statistical and physical properties
of the validation dataset. The overall information extracted
from bulk statistics does not pinpoint SPPs’ sources of uncer-
tainties. Precipitation mechanisms are complex and depend
on several environmental and physical parameters. Hence,
considering environmental and/or physical parameters to con-
dition the matchup dataset provides a basis for more detailed
uncertainty analyses of SPPs. In this study, MRE, CRMSE
and CORR are analyzed with respect to the distance to coast-
line, and elevation. Conditioning the matchup dataset with
these physical parameters aim at capturing trends characteriz-
ing sources of uncertainty in SPPs. Similarly, IMERG is bro-
ken down into its components as PMW, IR, morph, and
morph1IR so that the uncertainty can also be tracked backed
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to Level-2 retrievals. Other statistics used to evaluate IMERG
involve (i) spatial maps, (ii) probability of occurrence and vol-
ume, and (iii) bivariate histograms.

Each of the above is undertaken separately for each surface
type (land, coast, and ocean) and region (West, East, and
Gulf Coasts of CONUS). The evaluation is conducted by con-
ditioning the dataset based on distance from coastline, eleva-
tion, rainfall magnitude, and rainfall type.

The MRE quantifies the degree of systematic component
of the uncertainty, normalized by the mean rain rate of the
GV-MRMS. CRMSE is a measure of the random component
of the error since bias has been removed:

MRE �
∑(SPP 2 GV)∑

GV
, (1)

CRMSE �

��������������������������������������������������������
1
M

∑
SPP 2 GV 2

1
M

∑(SPP 2 GV)
[ ]2√

1
M

∑
GV

, (2)

where GV represents GV-MRMS, and SPP represents IMERG,
or its components rainfall magnitudes. CORR is an indicator of
the temporal and spatial linear similarities between SPP and
GV-MRMS. Perfect MRE is zero (no bias), positive MRE indi-
cates that SPP is overestimating, and negative MRE indicates
that SPP is underestimating.

3. Rainfall quantification results

a. General performance

The climatology of precipitation varies significantly across
the United States. Their depiction varies also with precipitation
products. To understand this variability and the satellite rain-
fall retrieval performances with respect to the reference over
the ocean, coast, and land surfaces, Fig. 1 represents GV-
MRMS, IM-F, IM-E, PMW, IR, morph, and morph1IR condi-
tional mean (.0.1 mm h21) rainfall for the year 2015. To eval-
uate discrepancies between SPP and GV-MRMS when it rains,
conditional mean rainfall is used here instead of unconditional

FIG. 1. Conditional mean rainfall during year 2015 for (b) GV-MRMS, (c) IM-F, (d) IM-E, (e) PMW, (f) IR,
(g) morph, and (h) morph1IR and (a) NEXRAD locations over CONUS.
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mean rainfall. Only cases where precipitation is detected either
by SPP or GV-MRMS are considered. Figure 1b shows that
GV-MRMS conditional mean rainfall decreases further away
from the coast at distances beyond 100 km from the radar
sites. This is related to radar sampling conditions that deterio-
rate with distance (i.e., radar beamwidth and height), which is
clearly indicated in the RQI distribution (Wang et al. 2021).
As mentioned in the previous section, to ensure a high-quality
ground reference, GV-MRMS data within 100 km of
NEXRAD locations (black dots represents each reporting
NEXRAD locations and red circles represent the 100 km di-
ameter around each NEXRAD in Fig. 1a) are considered in
this study. While it only partly represents open ocean rainfall
conditions, it provides good representation of the land, coast,
and ocean continuum.

GV-MRMS (Fig. 1b) observes the highest conditional
mean rainfall over the Gulf Coast compared to the West and
East Coasts. It is related to the tropical cyclone activity that
affects this region. The spatial distribution is captured by all
IMERG products, with uncertainty in terms of magnitude.
IM-F (Fig. 1c) and IM-L (not shown here) performances are
very similar to each other and closest to the GV-MRMS
ground reference visually. It should be noted here that IM-L
and IM-E products are satellite only meanwhile IM-F is gauge
corrected. This suggests that the monthly gauge correction
does not influence the quantity of precipitation across IM-L
and IM-F. This could be due to lack of reporting rain gauges
in the land-coast-ocean continuum. IM-E (Fig. 1d) shows
overestimation compared to GV-MRMS, IM-F, and IM-L.
Part I of this study showed the benefits of backward- and for-
ward-propagated PMW estimates (morph) used in IM-L and
IM-F compared to forward-propagated PMW estimates used
in IM-E because the forward-propagated PMW estimates
generates higher detection rates and lower miss rates. IM-E
overestimation could be an indication of the limitation associ-
ated with the forward-only propagated PMW estimates.
Looking at the IMERG components, PMW (Fig. 1e) shows
overestimation over the Gulf Coast and the Northwest coast-
line. As expected, morph (Fig. 1g) shows a similar spatial dis-
tribution compared to PMW but with significantly lower
conditional mean rainfall. This could be due to smoothing ef-
fects of forward- and backward-propagation techniques ap-
plied on PMW estimates to calculate morph dataset. Hence,
even though the spatial distribution of PMW is maintained,
the conditional mean rainfall is significantly decreased. Re-
garding the IR component, Part I highlighted IR-based rain-
fall detection challenges, especially missed precipitation
where IR conditional relative rainfall occurrence is reported
to be generally lower than 50% (30%) over the East Coast
(Northwest coast). Here, IR displays the highest overestima-
tion compared to GV-MRMS, which indicates that quantifica-
tion is also a challenge with the IR-based retrievals. Over the
West Coast, while PMW (Fig. 1e) captures the orographic en-
hancement causing the gradual increase inland, IR (Fig. 1f)
reports overestimation over ocean, coast, and land and does
not capture the spatial distribution of precipitation over
this region. PMW displays similar geospatial features as
GV-MRMS over Gulf Coast, yet with slight overestimation.

Meanwhile, IR does not capture the spatial distribution and
reports significant overestimation over the Gulf Coast. On
the other hand, morph1IR (Fig. 1h) reports the lowest con-
ditional mean rainfall compared to all other products. This
suggests that the main contributor in morph1IR is morph;
however, it is surprising that the morph1IR conditional
mean rainfall is lower than morph as well. This could be be-
cause the weights used in the Kalman filter scheme decrease
and smooth the conditional mean rainfall while merging IR
and morph.

As mentioned in section 2, IMERG product’s Level-2 com-
ponents PMW, IR, morph, and morph1IR precipitation esti-
mates are examined individually to track uncertainties from
Level-2 algorithms. The contribution of each of the Level-2
datasets is shown in Fig. 2 with the percentage occurrence of
PMW, IR-only, morph, and morph1IR in IM-F. For this
figure only, IR-only instances are obtained from the precip-
itationUncal field with no PMW retrieval contribution
(HQprecipSource reports zero) and with IRkalmanFilter-
Weight contribution equal to 100%. The IR-only contribution
to the Level-3 IMERG product is lower than other compo-
nents (,20%) and it is located on the East Coast and the
Northwest coast (Fig. 2b). Due to performance issues of IR
products, the IMERG algorithm minimizes the contribution
of the IR-only precipitation retrievals. Meanwhile, PMW per-
centage of occurrence contribution is at around 20%–30%
over all three regions (Fig. 2a). Overall PMW occurrence con-
tribution is slightly higher over the Northwest and Northeast
land–coast–ocean continuum. Even though PMW precipita-
tion retrievals have comparatively better performance than
other Level-2 products, their occurrence contribution is lower
due to the sampling of low-Earth-orbiting satellites. Morph
(Fig. 2c) has the higher percentage of occurrence (30%–50%)
over the Northwest and Northeast CONUS compared to
PMW. Morph was used slightly less over the Northeast land
regions compared to ocean over the same region, meanwhile
over the Gulf Coast, morph is used more frequently over the
land surface type compared to ocean surface type. Part I re-
ported that due to a lack of direct observations, the morphed
PMW detection performance is lower (lower hits and higher
false alarm rates) compared to PMW. The morphing increases
the occurrence of estimated rainfall as indicated by higher
percentage occurrence (Fig. 2c). Over the Gulf Coast, the
Southeast, and the Southwest, morph1IR has the highest per-
centage of occurrence (50%–60%). Meanwhile, over the
Northeast land and Northwest land and ocean, morph1IR
has the lowest percentage of occurrence. Part I reported an
overall trend of decreasing detection performance from PMW
to morph to morph1IR and to IR products, with continuously
decreasing hits and increasing false alarm rates. This trend
highlights a tendency to overestimate rainfall occurrence with
increasing time lag from PMW observations.

Figures 1 and 2 show that each IMERG products’ perfor-
mance depends on location because (i) rainfall characteristics
and their spatial distributions vary significantly with climatol-
ogy across the United States and (ii) the IMERG components
have spatially uneven contributions to the merged product.
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In Figs. 3 and 4, PDF by occurrence (PDFc) and by vol-
ume (PDFy) of the 30-min rain rates are computed for each
IMERG product and GV-MRMS, respectively. PDFc displays
the frequency of occurrences of each rain rate category to the
total number of occurrences. PDFy is the relative contribution
of each rain rate bin to the total rainfall volume, computed as
a ratio between the sum of the rain rates in each bin to the
total sum of the rain rates (Wolff and Fisher 2008). PDFc

highlights the differences in GV-MRMS and SPP estimates’
sensitivity as a function of rain rate. PDFy highlights the influ-
ence of various rain rate magnitudes. Figure 3 represents
PDFc for each region and surface type for GV-MRMS (gray
bars), and all SPPs (lines for each IMERG product and com-
ponent). In terms of regional differences, GV-MRMS shows
clear differences between the West Coast, Gulf Coast, and
East Coast. Over the West Coast, the GV-MRMS distribution
is narrower compared to other regions and it displays lower
occurrence of higher rainfall. The distribution mode is around
∼2.2 mm h21 and skewed slightly to the left. Light to medium
rainfall (0.1–2 mm h21) occurrence is highest compared
to other regions. Over the Gulf Coast, GV-MRMS shows
a wider distribution where occurrence of each rainfall rate
is more uniformly distributed compared to other regions.
Over the East Coast GV-MRMS distribution mode is around
∼1.7 mm h21 and skewed to the left. In terms of surface dif-
ferences, GV-MRMS distribution display slightly lower rain
rates over ocean compared to the land and coastal surface
types over all regions.

Overall, in Fig. 3, SPPs have similar distributions by occur-
rence (mean [1.8–3.8 mm h21], standard deviation [1.7–5.3]) com-
pared to the GV-MRMS distributions (mean [1.8–3.5 mm h21],
standard deviation [1.7–5.3]) over all regions and surface
types except IR (mean [2.1–4.1 mm h21], standard deviation
[1.9–5.9]). The IR distribution is shifted toward higher rainfall
rates especially over ocean. The IMERG components (PMW,
morph1IR and morph) distributions are like each other and

close to GV-MRMS distributions. Over the West Coast and
consistently with GV-MRMS, all SPPs display narrower distri-
butions than other regions (especially over ocean) with mode
around ∼2 mm h21, and a slight left skew. Over the Gulf
Coast and the East Coast, SPPs (except IR) also display distri-
butions consistent with GV-MRMS.

As GV-MRMS, most SPPs distributions do not show signif-
icant dependency with surface types (except IR) overall, but
lighter precipitation rates are noted over the ocean.

Over the West Coast the GV-MRMS mode is at around
3.4 mm h21 (Fig. 4). Most of the rainfall volume that falls
over this region is in the range [1–5 mm h21]. Over the Gulf
Coast, the GV-MRMS distribution is skewed to the left
(mode ∼7 mm h21) and the contribution of light rainfall to
the total rainfall volume is minimum (mean ∼10.5 mm h21).
Over the East Coast, the mode of the GV-MRMS distribution
is around ∼4.5 mm h21 and has a slight left skew. GV-MRMS
PDFy are very similar to each other over coast and land for all
regions, yet it shows slight differences over ocean. GV-MRMS
land and coast PDFy distributions are similar but show regional
differences with mean ∼4.1 mm h21 (∼11.0 mm h21) and the
standard deviation ∼3.8 (∼10.0) over the West (Gulf) Coast.
Meanwhile, GV-MRMS PDFy mean is 3.4 mm h21 (6.7 mm h21)
and standard deviation is 2.9 (8.5) over the ocean West (Gulf)
Coast.

SPPs PDFy shows systematic characteristics and depar-
tures with respect to the GV-MRMS PDFy reference.
SPPs PDFy overestimate the contribution of light rainfall
(,1 mm h21) and underestimate the contribution of high
rainfall rates (.3 mm h21) to the total rainfall volume
over all regions and surface types. It suggests the IMERG,
and its components meet challenges with extreme precipitation
events. Note that SPPs show more similar distribution curves
with each other than with GV-MRMS including the IR PDFy.
Each region has distinct PDFy characteristics and all SPPs
capture these characteristics to some extent compared to

FIG. 2. Percentage of occurrence for (a) PMW, (b) IR-only, (c) morph, and (d) morph1IR. The percentage of each
grid box is computed by dividing the number of samples of individual sensor by the total number of observations dur-
ing the study period, hence for each pixel the added proportions make up to 100%.
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GV-MRMS. Over the West Coast, all SPP distributions
overestimate rainfall contributions up to ∼1.5 mm h21 and
underestimate the contributions of heavier rainfall rates. IR
performance is more similar to other products over ocean than
over coast and land. Over the Gulf Coast, SPPs do not capture
the features of GV-MRMS PDFy as much. Specifically, the
GV-MRMS PDFy shows a left skewed distribution suggesting
that light rain rates have less influence in this region dominated
by tropical activity. SPPs do not capture this left skewed distri-
bution and show more symmetrical distributions compared to
GV-MRMS. Over the East Coast, the GV-MRMS distribution
is also left skewed albeit slightly less than over the Gulf Coast,
and SPPs do not capture the GV-MRMS PDFy features con-
trasting the contributions of light versus heavy rainfall.

A general quantification evaluation of the SPP can be
provided with density scatterplots of SPP with respect to
GV-MRMS. Due to limited space, only IM-F is provided in
Fig. 5 along with MRE, CRMSE, and CORR score values.

Overall, IM-F quantification of light rainfall is poorer com-
pared to medium and heavy rainfall. Over all surfaces and
regions, IM-F slightly overestimates precipitation rates
with MRE in the range from [20.01 to 10.36], CORR
around 0.5, while CRMSE values are quite high [2.9–4.5]
relative to GV-MRMS.

The performance of IM-F varies slightly from region to re-
gion. Lowest (highest) MRE values are reported over the
East Coast [0.01–0.26] (West Coast [0.24–0.36]). Meanwhile,
lowest (highest) CRMSE values are reported over the West
Coast [2.9–3.7] (Gulf Coast [3.1–4.5]), respectively. The IM-F
overestimation over the West Coast occurs with higher rain-
fall magnitudes. The higher CRMSE values over the Gulf
Coast are associated with lower densities along the 1:1 line.
It indicates that IM-F quantification is challenged over this
region. This could be due to extreme events (e.g., tropical
cyclones) observed in this region, and this higher random
component of the error could be due to either sensors or

FIG. 3. PDF by occurrence (PDFc) as a function of GV-MRMS rainfall rate (mm h21) over the (left) West Coast, (center) Gulf Coast, and
(right) East Coast regions and (top) land, (middle) coast, and (bottom) ocean surface types.
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algorithms quantification challenges. Moreover, the Gulf
Coast displays the lowest densities along the 1:1 line. Over the
West Coast, IM-F is overestimating higher rainfall magni-
tudes for all surface types, with high density peaks above the
1:1 line. It is causing an overall overestimation (MRE values
in the range [0.24–0.36]). Moreover, the lighter rainfall magni-
tudes tend to be underestimated by IM-F over all surface
types over the West Coast region. IM-F quantification perfor-
mance over the Gulf Coast is slightly different compared to
other regions. The lighter rainfall magnitudes are overesti-
mated over land and ocean surface types and underestimated
over the coast surface type. Heavier rainfall magnitudes are
overestimated for coast and ocean surface types and underes-
timated over the land surface type. IM-F quantification of
lighter rainfall is similar over the East and the West Coast,
with lighter rainfall is overestimated for all surface types.

IM-F quantification performance depends on surface types.
Surprisingly in all regions the performance is lower over the

ocean surface compared to coast and land surface types, with
higher MRE and CRMSE.

b. Performance based on distance from the coastline

Figure 6 shows bivariate histograms of distance to the
coastline as a function of GV-MRMS and IM-F matched
rainfall over each region and surface type. For the sake of
brevity, only the IM-F performance is presented. Perfect
agreement between IM-F and GV-MRMS corresponds to
the 1:1 line, while IM-F overestimation (underestimation)
lays over (under) the 1:1 line. Each rainfall rate matched bin
is colored by the mean distance to the coastline of the corre-
sponding population of matched grids. Cold colors represent
closer distances and warm colors represent further distances
to the coastline. The perfect bivariate histogram of distance to
coastline as a function of GV-MRMS and IM-F rainfall rates
would gather all pairs on the 1:1 line with no cluster of colors.
It should be noted that the sample size at the edges of this

FIG. 4. PDF volume (PDFy) as a function of GV-MRMS rainfall rate (mm h21) over the (left) West Coast, (center) Gulf Coast, and
(right) East Coast regions and (top) land, (middle) coast, and (bottom) ocean surface types.
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plot is relatively smaller (see Fig. 5) and results in less robust
statistics. This bivariate histogram helps us understand the
performance of SPPs near the coastline over different surface
types and regions.

Over the West Coast land surface type, lower IM-F and GV-
MRMS rainfall magnitudes (,0.5 mm h21) are more often asso-
ciated with larger distances to the coastline (range [90–110 km]),
and they are slightly deviated from the 1:1 line (slight over-
estimation from IMERG). By contrast, higher rainfall mag-
nitudes (.8 mm h21) are recorded by GV-MRMS closer to
the coastline (within 75 km) that IM-F more often and signifi-
cantly underestimates. Moisture-laden westerlies from the
ocean generate high precipitation when they encounter the
high mountain ranges of California, Oregon, and Washington
(e.g., Olympic Mountains, Cascades, and Sierra Nevada
range) while drier air generates less precipitation further
inland. The IM-F underestimation closer to the coastline can
be explained by the tenuous ice PMW scattering signatures
generated by orographic warm rain processes. Also, IMERG
may be challenged to estimate light precipitation over warm
and heterogenous surfaces inland. Note an area of extreme
GV-MRMS precipitation rates (.20 mm h21) at large dis-
tance (.100 km) that are underestimated by IM-F. Further

analysis (not shown) indicates that this underestimation could
relate to orographic precipitation in the Cascade Range
located ∼100 km away from the coastline. These trends and
features are similar over the coastal surface, but gradients of
distance with IM-F departures from the 1:1 line are more sig-
nificant. IM-F overestimates GV-MRMS rainfall magnitudes
0.1–1.0 mm h21 at distances far from the coastline. Underesti-
mation at closer distance to the coastline is related to oro-
graphic precipitation that generates limited ice content aloft.
The highest rates reported by both IM-F and GV-MRMS
occur within 20 km of the coastline. They are associated with
both significant underestimation (as already noted over land
surface) and overestimation, which highlights the challenge
for IMERG to estimate precipitation where emissivity gra-
dients are mixed with orographic processes. Less dependance
with distance is noted over ocean, but one can note a trend
toward overestimation at large distances (.70 km) and for
high rain rates (.5 mm h21).

Over the East Coast land and coastal surface types, there
are three major clusters. In general, closer to the coastline,
IMERG is overestimating and farther away from the coastline
IMERG is underestimating significantly. Over the coastal sur-
face type, IMERG substantially overestimates GV-MRMS

FIG. 5. Density scatter of IM-F and GV-MRMS (mm h21) over the (left) West Coast, (center) Gulf Coast, and (right) East Coast regions
and (top) land, (middle) coast, and (bottom) ocean surface types. Each plot provides corresponding MRE, CRMSE and CORR.
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rainfall magnitudes in between 0.1 and 10 mm h21 within
∼20 km away from the coastline. IMERG starts to underesti-
mate further away from the coastline at around ∼50 km.
Moreover, IMERG shows significant underestimation of GV-
MRMS rainfall magnitudes greater than 20 mm h21 farthest
away from the coastline at around ∼80 km. This change of
quantification performance can be due to complex coastal fea-
tures consisting of barrier islands and coastal inlets over this
region and Appalachian Mountains farther away from the
coastline.

Over the Gulf Coast, IMERG shows the least discrepancies
as a function of distance from the coastline compared to other
regions. IMERG shows similar performances over the land
and coastal surface types, while over the ocean it has slightly
different performance. Over the coastal surface type IMERG
shows significant overestimation very close to the coastline.
Meanwhile at around ∼30 km away from the coastline IMERG
performance is the best (near 1:1 line). Over the ocean surface
IMERG in general significantly underestimates near the coast-
line and significantly overestimates far away from the coastline.
At around ∼50 km from the coastline the quantification perfor-
mance of IMERG is better (near 1:1 line).

Gradients or clusters of distance with IM-F departures from
the 1:1 line is less important in the Gulf and the East Coast re-
gions. Overall, gradients tend to be more important over the
coastal surfaces in all regions, and both Gulf and East coasts
show large precipitation rate departures at the coastline, as ex-
pected. Over the ocean surface, a large underestimation is
noted for high GV-MRMS rain rates (.10 mm h21) at closer
distance to the coastline for all regions, consistent with the
coastal features. The trend toward overestimation at large dis-
tances (.70 km) and for high rain rates (.5 mm h21) in the
West Coast region is also noted in the Gulf, but not in the
East Coast region. Over the land surface type, IM-F is overes-
timating GV-MRMS lower rainfall magnitudes. There is an-
other cluster showing significant underestimation of heavier
GV-MRMS rainfall magnitudes at farther distance from the
coastline.

The distance to the coastline appears to have a large impact
on IM-F quantification performance over the West Coast, and
a slighter impact over the East Coast and the Gulf Coast. It
confirms that the complex terrain proximity to the coastline
over the West Coast has effects on IM-F quantification
performance.

FIG. 6. Bivariate histogram of distance to coastline (km) as a function of GV-MRMS and IM-F rainfall (mm h21) over the
(left) West Coast, (center) Gulf Coast, and (right) East Coast regions and (top) land, (middle) coast, and (bottom) ocean surface types.
Note that the color bar limits for each surface type are different.
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Similar to Fig. 6, Fig. 7 shows bivariate histograms of
months of highest occurrence for GV-MRMS and IM-F
matched rainfalls over each region and surface type. It should
be noted that these two plots share the same GV-MRMS and
IM-F rainfall magnitude bins. Hence, the same matched
bins connect the distance to the coastline and the corre-
sponding month of highest occurrence. Most of the matched
pairs in the West Coast feature winter months (December
and January) consistent with synoptic-scale cyclones and
fronts from the Pacific Ocean that interact with coastal moun-
tains. It generates high rain rates that are underestimated by
IM-F, especially over the land surface type (Fig. 6). Over the
coastal surface IM-F shows over and underestimation of all
GV-MRMS rainfall magnitudes during winter months. Other
high GV-MRMS rates underestimated by IM-F occur in
August, especially over land at farther distance from the
coastline (Fig. 6) in relation to orographic processes and the
presence of a longwave ridge over most of the country during
the late summer months. Overestimation of corresponding
lighter rainfall magnitudes of GV-MRMS far away from the

coastline (land and ocean) is observed during the September
and March months.

The Gulf Coast displays more seasonal variations in the
GV-MRMS-IM-F discrepancies. More agreement (close to
1:1 line) occurs in spring (March and April) especially over
coastal and land surfaces. IM-F underestimation generally oc-
curs during summer months, and overestimation tends to oc-
cur during fall months. It suggests that IM-F underestimates
sea-breeze fronts, convective storms and tropical cyclones that
are observed during the summer months. Meanwhile IM-F is
overestimating the return flow of Gulf-modified warm, moist
air and cold front passages during cooler seasons.

Over the East Coast, the clusters over land and coast surface
types are quite similar to each other. Over the coast surface
type, as mentioned in Fig. 6, IMERG largely overestimates the
GV-MRMS rainfall magnitudes near the coastline and further
away from the coastline IMERG overestimates substantially.
This change in quantification performance is captured in Fig. 7
as well, during June, IMERG shows overestimation for lower
GV-MRMS rainfall magnitudes and underestimation for

FIG. 7. Bivariate histogram of highest occurrence of months as a function of GV-MRMS and IM-F rainfall (mm h21) over the
(left) West Coast, (center) Gulf Coast, and (right) East Coast regions and (top) land, (middle) coast, and (bottom) ocean surface types.
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higher GV-MRMS rainfall magnitudes. Underestimation during
June far away from the coastline is directly related to the com-
plex terrain over the East Coast. Overestimation during June
near the coastline can be related to the complex relations be-
tween atmosphere and coastal features consisting of barrier is-
lands and coastal inlets. Moreover, at around ∼50 km away from
the coastline IMERG shows diverse performance (overestima-
tion and underestimation) of GV-MRMS rainfall magnitudes in
between 0.1 and 2 mm h21. It is clear from Fig. 7 that the overes-
timation of the GV-MRMS rainfall magnitudes by IMERG is
observed over the June months meanwhile the underestimation
is observed during the March months over the same regions.
This shows that IMERG quantification performance is affected
by the complex interactions between land–coast–ocean contin-
uum during different seasons over the same locations.

IM-F large dependency on distance from the coastline over
the West and East Coasts is further investigated with system-
atic departures conditioned on distance from the coastline and
elevation. Figure 8 shows a bivariate histogram of MRE as a
function of distance from the coastline (x axis; km) and with
elevation (y axis; m) for each surface type and region. Each bin
is colored by MRE value of IM-F against GV-MRMS, with
warm colors for positive MRE (overestimation) and cold col-
ors for negative MRE (underestimation).

In Fig. 8, over the West Coast land surface type IM-F biases
strongly depend on elevation and distance to the coastline.
Three main clusters of overestimation and underestimation can
be separated. Their corresponding location at the West Coast is
identified as they may reflect different meteorological patterns:

1) Cluster of an underestimation in the [35–110] km dis-
tance ranges from the coastline and at elevation higher
than 300 m. This underestimation is located mainly in
California near the coastline (not shown) which confirms

that IM-F has low quantification performance of oro-
graphic rainfall.

2) Cluster of an overestimation within 145 km from the
coastline and at elevation less than 450 m. This cluster is
in Washington State and Oregon over the West Coast.

3) Cluster of mixed under/overestimation at distances greater
than 155 km for elevations greater than 400 m. This cluster
is in the north of Washington State. This diverse quantifi-
cation performance of IM-F can be explained by a couple
mechanisms. The first is IM-F underestimation of oro-
graphic enhancement where PMW has detection issues of
warm clouds with lower ice content aloft. The second is
IM-F overestimation, which can be explained by the lee
side convergence (Kirshbaum et al. 2018) due to diurnal
variability. The amount of observed rainfall is lower; how-
ever, IM-F is overestimating these mechanisms.

Similar features are noted over the West Coast coastal surface
type.

Over the Gulf Coast, which is mainly characterized by flat
terrain, both land and coast surface types display underesti-
mation at all distances and terrain elevations. The underesti-
mation is greater near the coastline and at lower elevations
(MRE values in the range [20.4 to 0.8]) than at larger distan-
ces from the coast (MRE values in between [0 and 0.2]). It
confirms that the fundamental challenges when it comes to
quantifying rainfall magnitudes over the land–coast–ocean
transition zones in flat terrain as well.

Over the East Coast both land and coastal surface types dis-
play limited biases at all distances and terrain elevation. MRE
values are within 60.2 near the coastline, with more significant
underestimation (MRE values in between [20.4 and 0.8])
away from the coastline where complex terrain may trigger
warm rain processes. As mentioned earlier on the East Coast

FIG. 8. Bivariate histogram of MRE as a function of distance from coastline (km) and elevation (m) over the (left) West Coast,
(center) Gulf Coast, and (right) East Coast regions and (top) land and (bottom) coast surface types. Note that the y-axis limits for each
subplot are different.
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the Appalachian Mountains and other complex coastal fea-
tures that include barrier islands and coastal inlets can generate
either small overestimation or underestimation in IMERG. As
mentioned in Fig. 7, overestimation near the coastline is ob-
served over the summer months while underestimation near
the coastline is observed over the winter months. Seasonal var-
iations are driven by the Gulf Stream that conditions wind, hu-
midity, and temperature patterns during the warm season, and
by the occurrence of extratropical cyclones just offshore of the
eastern CONUS during the cold season.

Figure 9 shows the bias dependence in terms of MRE with
distance from the coastline for each SPPs. MRE values show
significant dependence on distance from the coastline over
land and coast surface types. In general, the highest overesti-
mation is found with PMW [0.2–1.2] for almost all regions and
surface types, while IM-F [20.1 to 0.8] and IM-L [20.2 to 1.1]
show the lowest bias magnitudes.

As expected, the distance from the coastline exerts a more
significant influence over the West Coast due to the large to-
pography gradient adjacent to the ocean. Large overestimation
occurs near the coastline over both land and coast surface types,
which turns to lower overestimation at distances [10–20] km
over land and [20–40] km over coast then back to significant
overestimation further inland. As discussed earlier, IR perfor-
mance differs from other SPPs, and its performance near the
coastline is degraded with highest MRE [.0.8] values. Over
the land surface type at 20 and 55 km from the coastline IR
shows the lowest MRE [∼0] values compared to other SPPs.
IM-F has relatively lower MRE [0.1–0.4] values and PMW
shows the highest MRE [0.2–1.0] values compared to other
SPPs. PMW poor performance over this region can be in-
ferred from orographic precipitation processes combined with
coastal gradients of emissivity from ocean and land. Morphing
has lower MRE [0.1–0.9] values compared to PMW. In Part I
of this study, it was observed that morphing tends to in-
crease the occurrence of lower retrieved rainfall rates. Over
the coastal surface type, IM-F and PMW show the highest
MRE [0.4–1.4] values while morph1IR, IR, and morph
show the lowest MRE [0–0.8] values up to 65 km then beyond
65 km IR and IM-F show the lowest MRE [0.3–0.9] values.
Over the ocean surface type, all SPPs show increasing overes-
timation with distance from the coastline while IR shows
constant overestimation at 140%. Overall, IR MRE [∼0.4]
values display less dependance with distance from the coast-
line and overestimate at all distances. Other SPPs show slight
underestimation near the coastline (except IM-F, PMW,
morph, and IR show overestimation), which turns into an
overestimation beyond 5 km offshore, with more dependance
on the distance from the coastline. Morph1IR (PMW and
IR) have the lowest (highest) MRE [20.1 to 0.4] ([0.2–0.7])
values. IM-F and IM-L show slight differences in MRE up to
25 km away from the coastline while IM-L and IM-E perform-
ances are similar to each other. Beyond this distance IM-F,
IM-L, and IM-E show very similar MRE values. The differ-
ences near the coastline can be attributed to the various IR
and PMW contributions to the IMERG runs. PMW perfor-
mance near the coast is the worst for all surface types and sig-
nificantly influences IM-L and IM-E and propagates to IM-F.

Over the Gulf Coast, the dependence on the distance from
the coastline is lowest compared to the other two regions,
probably due to flatter terrain. One can note a shift toward
higher MRE value from land to coast to ocean surfaces for all
SPPs except IR. SPPs tend to overestimate at all distances
from the coastline, with some exceptions. Again, PMW shows
the highest overestimation [0.2–0.5] over all surface types.
Over land, IM-F, and morph1IR show underestimation while
other SPPs slightly overestimate. IM-L, IM-E, IR, and morph
show similar and very low MRE [0–0.1] values. Surprisingly,
even though morph and IR show similar MRE values (slight
overestimation without dependence on distance from the
coastline), morph1IR shows significantly different MRE
[20.1 to 0.1] (slight underestimation with dependence on dis-
tance from the coastline). This trend is reflected in IM-F be-
cause since the contribution of morph1IR to IM-F is the
highest (see Fig. 2d showing the percentage contribution of
morph1IR). Over the coast surface type, all SPPs except IM-F
slightly overestimate GV-MRMS without dependence on dis-
tance from the coastline. In general, morph1IR and IM-F
shows lower MRE values. Over ocean all SPPs overestimate
GV-MRMS. IR and morph1IR show the lowest MRE values.
IM-L, morph and IM-F show similar performances while IM-E
has higher MRE values. As morph has higher contribution to
IM-F over ocean in the Gulf Coast region (Fig. 2c), this is re-
flected in the IM-L and IM-F performances.

Over the East Coast, SPPs show slight overestimation with
some exceptions, and again more significant overestimation
over ocean. Over the land surface type IR and PMW have the
highest MRE values while morph1IR and IM-F show the
lowest MRE (close to zero). IR shows more significant depen-
dence on distance; from the coastline, overestimation turns
into slight underestimation farthest away from the coastline
[20.1 to 0.3]. IM-E, IM-L, and morph display similar MRE
values (slight overestimation) with slight dependence on dis-
tance from the coastline. Over the coast surface type, SPPs
MRE show the most dependence on distance from the coast-
line, especially the IR, IM-F, and morph1IR products. Be-
yond ∼35 km away from the coastline, slight overestimation
turns into underestimation, which might be related to barrier
islands and coastal inlets or the warmer Gulf Stream. IM-F
shows the highest underestimation [20.1 to 0.1] while PMW
shows the highest overestimation [0.2–0.3]. IM-E, IM-L, and
morph products show the least dependence on distance from
the coastline. Similar performance of IR and morph1IR over
this surface type can be explained by the relatively higher con-
tribution of IR (Fig. 2b) and IR uncertainty is carried over to
morph1IR and eventually to IM-F. Over the ocean surface,
SPPs show almost no dependance on distance from the coast-
line compared to the other surface types. PMW shows the
highest overestimation, followed by IM-E and IM-F, and
morph1IR and IR have the lowest MRE.

c. Precipitation typology

As typology is a key characteristic of precipitation (Kirstetter
et al. 2020), IMERG quantification performance is investigated
as a function of precipitation types, i.e., GV-MRMS stratiform
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FIG. 9. MRE as a function of distance from coastline over the (left) West Coast,
(center) Gulf Coast, and (right) East Coast regions and (top) land, (middle) coast,
and (bottom) ocean surface types for all SPPs.
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vand convective rainfall. Any pixel with positive convective
volume contribution is a convective case meanwhile any pixel
with zero convective volume contribution is a stratiform case.
Figure 10 provides MRE for each product, over each surface
type, and region for stratiform and convective precipitation
types. Overall, SPPs (with IR exceptions) show overestimation
for stratiform rainfall (MRE in the range [0–0.8]) and increasing
underestimation for more convective precipitation (up to20.8).
Only over the West Coast ocean surface type SPPs significantly
overestimate convective precipitation. Over all regions and sur-
face types, PMW shows overestimation of stratiform cases
(MRE in the range [0.2–0.8]) meanwhile shows over/underesti-
mation of convective cases (MRE in the range [20.5 to 0.6]).
IR, on the other hand, shows over/underestimation of stratiform

cases (MRE in the range [20.4 to 0.4]) and meanwhile shows
significant underestimation of convective cases (MRE in the
range [20.8 to20.7]).

Over the West Coast region SPPs performance vary over
each surface type, which reflects the varying precipitation pro-
cesses and their SPP retrieval. Over the land surface type, all
SPP MREs show a dependence on precipitation type with
slight overestimation of stratiform precipitation rates (except
IR) and underestimation of convective rates. The effects of
each sensor and product type on IM-F, IM-L, and IM-E are
very clear. Morph and PMW MRE [20.6 to 0.4] performances
are close to each other with lowest MRE values. Meanwhile
IR and morph1IR performances [20.8 to 0.2] are also similar
to each other with highest MRE values. IM-F, IM-E, and IM-L

FIG. 10. MRE as a function of convective volume contribution over the (left) West Coast, (center) Gulf Coast, and (right) East Coast regions
and (top) land, (middle) coast, and (bottom) ocean surface types for all SPP.
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MRE values lie in between these two groups. Over coast sur-
face, IR has the lowest MRE [20.8 to 20.4] values and stand
out with respect to the other SPPs. SPP underestimations are
smaller for the convective precipitation type compared to over
land surface. This could be due to more prevalent warm rain
processes in the mountains compared to the coast. Over the
ocean surface type, SPPs surprisingly overestimate rates associ-
ated with higher convective volume contribution except IR.
Similar to other two surface types, IM-F, IM-L, IM-E, and
morph MRE values lay in between PMW [20.3 to 0.8] and
morph1IR [20.5 to 0.3] MRE values.

Over the Gulf Coast, all SPPs show similar MRE values for
all surface types. All SPPs show decreasing MRE values with
convective volume contribution, (PMW [20.5 to 0.8] and IR
[20.7 to 0.4] MRE values). Over the land and coast surface
types, IM-F MRE values are similar to IR and morph1IR,
while over ocean IM-F and morph MRE values are more
similar.

Similar trends can be seen over the East Coast, with some
differences. The overestimation of stratiform precipitation is
less important than in the Gulf Coast. IR underestimates
[20.7 to 0.1] GV-MRMS rainfall magnitudes for all convec-
tive contributions. Again, over the land and coast surface type
IM-F and morph1IR MRE [20.7 to 0.4] values are similar to
each other; IM-L and IM-E MRE values are similar to each
other and slightly lower compared to IM-F MRE values.
Over the ocean surface type, all SPPs show very similar MRE
values [20.6 to 0.4] and lay between PMW and IR.

4. Conclusions

The ability to quantify rainfall over the land–coast–ocean
continuum is examined over three coastal regions of the
United States, i.e., the West Coast, Gulf of Mexico, and East
Coast. Each region is characterized by different topographies
and precipitation climatologies. Complementing Part I of this
analysis on the detection capabilities of IMERG, quantifica-
tion performances are examined over the land–coast–ocean
continuum. Specifically, the quantification performance of
each SPP is examined by distance from the coastline and the
corresponding elevation to understand the impact of complex
terrain proximity to the coastline on SPP quantification perfor-
mance. The influence of stratiform and convective rainfall is
also examined. An integrated and novel approach is developed
to trace the quantification performance of IMERGV06B (IM-F,
IM-L, IM-E) back to their components (PMW, morph,
morph1IR, and IR) and sources of rainfall estimates.

The main results are summarized as follows:

• Level-3 IM-F quantification performance heavily depends
on the respective contribution of PMW, IR-only, morph,
and morph1IR components. IMERG components have
spatially uneven contributions to the merged products.

• IM-F and its components in general have similar PDFc

distributions compared to the GV-MRMS except IR.
However, SPPs PDFy distributions show systematic char-
acteristics and departures with respect to GV-MRMS.
SPPs PDFy overestimate the contribution of light rainfall

(,1 mm h21) and underestimate the contribution of high
rainfall rates (.3 mm h21) to the total rainfall volume,
indicating that IM-F and its components meet challenges
in quantification of extreme precipitation events. This
challenge was also reported by Tian et al. (2018) and Xu
et al. (2017). Decreasing quantification performances are
consistently noted with retrievals that rely on observa-
tions more indirectly related to surface precipitation.
Overall, IMERG displays nonhomogeneous precipitation
quantification properties that vary according to which
component is used, and that translates into nonhomoge-
neous accuracy in space and time.

• IM-F and IM-L performances of quantification of rainfall
are very similar to each other where IM-L has slightly higher
CRMSE values compared to IM-F, suggesting that the
monthly gauge correction does not influence the quantity of
precipitation across IM-L and IM-F products. It could be
due to lack of reporting rain gauges over land–coast–ocean
continuum or monthly rain gauge adjustment technique is
not sufficient to improve performance of IM-L.

Part I highlighted the positive impact of morphing on pre-
cipitation detection. Morph showed highest discrimination
ability with respect to GV-MRMS up to ∼2 mm h21 thresh-
old, and above this threshold PMW showed the highest dis-
crimination skill. When it comes to quantification, PMW
displays lower magnitudes of systematic and random error
compared to morph. Each IMERG product’s performance
depends on location because rainfall characteristics and their
spatial distributions vary across the United States.

• Each region has distinct precipitation regimes and charac-
teristics that are captured by SPPs with varying accuracy.
Each IMERG product and component shows variations in
quantification performance that highlight the impact of ter-
rain and climatology.

• The proximity of complex terrain to the coastline in the
West Coast is particularly challenging. Moisture-laden west-
erlies from the ocean generate high precipitation when they
encounter the high mountain ranges of California, Oregon,
and Washington (e.g., Olympic Mountains, Cascades, and
Sierra Nevada range) while drier air generates less precipita-
tion further inland. Higher rainfall magnitudes (.8 mm h21)
are recorded by GV-MRMS closer to the coastline (within
75 km) that IM-F more often and significantly underesti-
mates. This can be explained by the tenuous ice PMW
scattering signatures generated by orographic warm rain
processes. Also, IMERG may be challenged to estimate
light precipitation over warm and heterogenous surfaces
inland.

• Over the East Coast, quantification performance of IMERG
over North Carolina, Virginia, and the Long Island barrier
islands and coastal inlets shows seasonal dependence. Over
the coastal surface type, IMERG overestimates during the
summer months and underestimates during the winter
months. Surface types have a considerable influence that is
attributed to emissivity gradients and contrasts in land/ocean
precipitation characteristics.
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IMERG products and its components show significant
dependence on distance from the coastline and elevation,
especially over the land and coast surface types.

• Distance to the coastline dependence tends to be more
important over the coastal surfaces compared to other
surface types. All regions show large precipitation rate
departures at the coastline.

• Distance to the coastline dependence tend to be less impor-
tant over the ocean surface type but one can note a trend
toward an overestimation at large distance from the coast-
line for high rain rates (.5 mm h21).

Regional differences (especially the West Coast) result
from precipitation processes and generation mechanisms that
are not captured by IMERG. This is highlighted with the im-
pact of precipitation typology.

• Overall IMERG products and components show significant
different rainfall quantification performances for convec-
tive and stratiform rainfall. In general, SPPs (with excep-
tion of IR) show slight to significant overestimation for
stratiform rainfall type, meanwhile products show signifi-
cant underestimation for convective rainfall type (the West
Coast ocean surface type excluded).

• Depending on the percentage occurrence of each compo-
nent used to create IM-F, IM-F performance of quantifying
rainfall type changes. For example, over the West Coast
IM-F performance is similar to morph since the percentage
of occurrence of morph is higher over this region. In an
analogous manner, over the Gulf Coast morph1IR has the
highest percentage occurrence hence IM-F and morph1IR
performance of quantifying rainfall type is very similar to
each other.

• Quantification of stratiform and convective rainfall mag-
nitudes vary slightly across regions, which highlights the
impact of precipitation regimes.

Overall, orographic rainfall mechanisms and precipitation
type have the biggest influences on error characteristics of
SPPs relative to the land–coast–ocean differences. As precipi-
tation typology is a strong characteristic that is currently not
accounted for in IMERG, these results call for ingesting the
GPROF precipitation type information into IMERG. It
would potentially increase IMERG accuracy and its consis-
tency across regions. As future directions of this study, SPP
performances over CONUS complex terrain will be investi-
gated along with the influence of environmental variables.
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